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Abstract
Background: Corneocyte surface nanoscale topography (nanotexture) has recently emerged as a potential biomarker for inflam-matory skin diseases, such as atopic dermatitis (AD). This assessment method involves quantifying circular nano-size objects(CNOs) in corneocyte nanotexture images, enabling non-invasive analysis via stratum corneum (SC) tape stripping. Currentapproaches for identifying CNOs rely on computer vision techniques with specific geometric criteria, resulting in inaccuracies dueto the susceptibility of nano-imaging techniques to environmental noise and structural occlusion on the corneocyte.
Results: This study recruited 45 AD patients and 15 healthy controls, evenly divided into four severity groups based on their EczemaArea and Severity Index (EASI) scores. Subsequently, we collected a dataset of over 1,000 corneocyte nanotexture images using ourin-house high-speed dermal atomic force microscope. This dataset was utilized to train state-of-the-art deep learning objectdetectors for identifying CNOs. Additionally, we implemented a kernel density estimator (KDE) to analyze the spatial distributionof CNOs, excluding ineffective regions with minimal CNO occurrence, such as ridges and occlusions, thereby enhancing accuracyin density calculations. After fine-tuning, our detection model achieved an overall accuracy of 91.4% in detecting CNOs.
Conclusions: By integrating deep learning object detector with spatial analysis algorithms, we developed a precise methodologyfor calculating CNO density, termed the Effective Corneocyte Topographical Index (ECTI). The ECTI demonstrated exceptionalrobustness to nano-imaging artifacts and presents substantial potential for advancing AD diagnostics by effectively distinguishingbetween SC samples of varying AD severity and healthy controls.
Keywords: atopic dermatitis (AD), corneocyte surface topography, deep learning, object detection, kernel density estimator (KDE),atomic force microscope (AFM)

Compiled on: September 19, 2024.Draft manuscript prepared by the author.

1



2 | GigaScience, 2024, Vol. 00, No. 0

Introduction

Atopic dermatitis (AD) is a prevalent inflammatory skin disease,affecting approximately 20% of children and 5-10% of adults inhigh-income countries [1]. A multinational survey reported that10-20% of adult AD patients experience severe symptoms [2]. Theincreasing severity of AD has been shown to significantly impactquality of life, yet reliable biomarkers for assessing disease sever-ity are still lacking [3]. Therefore, finding an accurate measure iscrucial for effective disease management and evaluating treatmentefficacy.The Eczema Area and Severity Index (EASI) [4] and SCORingAD (SCORAD) [5] scores are the commonly used clinical tools forassessing AD severity, with a preference for the EASI [6]. However,the EASI is limited by its moderate interrater reliability and a lack ofinterpretability data, particularly in defining the severity ranges ofmild, moderate, and severe AD [7, 8]. Additionally, the EASI assignsequal weight to both extent and severity, potentially leading to aheterogeneous patient population with the same EASI score [9].Recently, corneocyte surface nanoscale topography (nanotex-ture) has emerged as a potential biomarker for evaluating skin dis-eases, particularly through the quantification of circular nano-sizeobjects (CNOs) in corneocyte nanotexture [10–13]. CNOs are nano-scale protrusions observed on the corneocyte surface that have beenlinked to skin barrier impairment [14] and AD, although their ex-act nature and underlying causes remain unidentified [12]. Thisbiomarker enables non-invasive ex vivo analysis through stratumcorneum (SC) tape stripping [15], which may serve as an objectiveand efficient tool for assessing AD severity.However, the current method, known as the Dermal Texture In-dex (DTI), identifies CNOs in corneocyte nanotexture images by uti-lizing computer vision techniques that rely on specific criteria, suchas height, circularity index, and area of CNOs [10, 11]. Consequently,this approach is prone to inaccuracies due to the susceptibility ofnano-imaging techniques to environmental noise. Moreover, theDTI calculates CNO density across the entire corneocyte nanotex-ture image (20x20 µm2), which may include ineffective regionswith minimal CNO occurrence, such as ridges and structural oc-clusions on the corneocyte surface, potentially compromising theaccuracy of density calculations.In this study, we used our in-house high-speed dermalatomic force microscope (HS-DAFM) [16] to establish an exten-sive database of corneocyte nanotexture images, capturing variouslevels of AD severity. The collected data was then leveraged to trainstate-of-the-art deep learning object detectors for the accurateidentification of corneocyte nanotexture features. To address po-tential inaccuracies and artifacts arising from the nano-imagingprocess, we further analyzed the spatial distribution of the detectedfeatures, aiming to enhance robustness in calculating CNO density.For statistical analyses, this study investigated variations in cor-neocyte surface topography across different levels of AD severity,as categorized by EASI scores. The objective was to improve currentclinical methods used by physicians to assess AD severity, providinga more reliable and quantifiable evaluation tool.

Material andMethods

Stratum corneum sample collection

This study included a total of 45 AD patients and 15 healthy con-trols in Taiwan (≥ 18 years). Ethics approval was obtained fromthe National Taiwan University Hospital (202204089RIND), andall participants provided written informed consent prior to partic-ipation. The sample size was estimated using Cochran’s formula,based on a 6.7% prevalence of AD in the Taiwanese population [17],with an 80% confidence level and a 5% margin of error [18, 19].The AD patients were evenly divided into three severity groups of 15

patients each, based on their EASI scores: G1 (AD mild, EASI = 0.1-7.0), G2 (AD moderate, EASI = 7.1-21.0), and G3 (AD severe, EASI >21.0). The healthy controls were categorized as G4 (no AD history).We systematically collected SC samples from both lesional and non-lesional skin areas of each AD patient, ensuring a comprehensiverepresentation of AD severity. No specific instructions were givenregarding the interruption of topical treatment, to ensure that thecollected SC samples closely reflected real-world clinical scenar-ios. However, we acknowledge the potential influence of topicaltreatment at the lesional collection sites.The SC samples were obtained using a standardized tape-stripping procedure [20]. During sampling, we collected 5 con-secutive circular adhesive tape strips (D101, 1.54 cm2, D-Squame,Clinical & Derm, Dallas, TX, U.S.A.) from the volar side of the fore-arm, approximately 10 cm below the elbow crease. Each tape stripwas pressed onto the skin for 10 seconds using a pressure instru-ment (D500, D-Squame, Clinical & Derm, Dallas, TX, U.S.A.) tomaintain a constant pressure of 225 g/cm2. Subsequently, we gentlyremoved each tape strip with tweezers and stored them individuallyin sampling vials.The initial two strips were excluded from analysis to minimizepotential contamination or impurities on the skin surface. Thethird strip underwent RNA analysis [21], the fourth strip was usedfor surface topography imaging with our HS-DAFM, and the fifthstrip was analyzed for natural moisturizing factors (NMF) [22]. TheSC tapes designated for AFM topography measurement were storedat room temperature, while the remaining tapes were immediatelystored at -80 °C until further analysis. This study focused on ana-lyzing corneocyte surface topography as a potential biomarker forAD severity assessment. Results from RNA and NMF analyses willbe detailed in upcoming publications.
Corneocyte surface topography dataset

To measure corneocyte nanotexture, we utilized a HS-DAFMequipped with an aluminum-coated silicon-nitride AFM probe(spring constant of 0.03 N/m, CSC38/Al, MikroMasch, Germany)with a tip radius of 8 nm. The SC samples were measured in contactmode at a constant height, with the contact force maintained below10 nN to ensure consistent measurement quality. The HS-DAFMscanner was calibrated using a piece of DVD data track layer (ap-proximately 1x1 cm2) as the calibration sample [23]. The DVD datatracks are characterized by a fixed period of 740 nm and a defineddepth of 160 nm, allowing precise scanner calibration through theirmeasurement.For each SC sample, 10 random areas were selected to capture thesurface topographical features of corneocytes, resulting in a com-prehensive dataset of over 1,000 corneocyte nanotexture images.Each image was acquired at a resolution of 512x512 pixels, coveringan imaging area of 20x20 µm2. The scanning range was chosenbased on findings from [11], which specify the typical dimensionsof CNOs (273 nm in height and 305 nm in width), ensuring that

Figure 1. Demonstration of a corneocyte nanotexture image before and after applying
the image enhancement algorithms. (A) Original corneocyte nanotexture image
captured using HS-DAFM. (B) Enhanced image revealing clearer CNO contours.
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the selected area is appropriate for capturing relevant nanoscalefeatures.
Image preprocessing

Corneocyte nanotexture features are often challenging to discerndue to the limited contrast level in AFM imaging [24] and their in-tricate structured backgrounds [25]. Therefore, we applied a seriesof image processing techniques to enhance the visibility of minutefeatures, such as CNOs, while effectively suppressing environmen-tal noise. This enhancement facilitated the subsequent process ofimage annotation and CNO detection.Initially, we applied Gaussian filtering to smooth the raw images[26], followed by subtracting the mean intensity across each rowto effectively mitigate striping artifacts in AFM imaging [27, 28].Subsequently, the images were normalized to a range of 0.0 to 1.0 toensure consistent intensity levels across all samples. Finally, disk-shaped morphological elements, with diameters of 9 and 15 pixels,were applied as percentile filters, systematically scanning the entireimage to enhance local contrast and improve the visibility of subtlefeatures, such as CNOs [29–31].Figure 1 shows the result of the image enhancement algorithms,demonstrating improved visibility of CNOs in a corneocyte nan-otexture image captured from an SC sample of an AD patient.
Training deep learning object detectors for CNO detection

Object detection is a critical task in computer vision that involvesidentifying and localizing objects within an image, and it has be-come a widely used technology in fields ranging from autonomousdriving [32, 33] to medical imaging [34, 35]. In this study, we eval-uated the performance of two state-of-the-art deep learning ob-ject detection approaches — Convolutional Neural Network (CNN)-based detectors [36–40] and Transformer-based detectors [41–47]— specifically for identifying CNOs in corneocyte nanotexture im-ages.Among CNN-based models, the YOLO (You Only Look Once) se-ries [38–40, 48–58] has emerged as the most popular frameworkfor real-time object detection, renowned for its optimal balancebetween speed and accuracy [59–61]. The latest iteration, YOLOv10[58], introduces notable advancements, such as non-maximumsuppression (NMS)-free training and large-kernel convolutions,which enhance its efficiency and accuracy, particularly in the detec-tion of small, intricate features [62, 63]. In contrast, Transformer-based detectors enable end-to-end object detection [64] by employ-ing self-attention mechanisms, which eliminate the need for NMSpost-processing. Building on this framework, RT-DETR (Real-Time Detection Transformer) [65, 66] further implements an effi-cient hybrid encoder and introduces uncertainty-minimal queryselection to improve both accuracy and latency.To train the object detectors, we systematically selected a datasetof 300 corneocyte nanotexture images with diverse AD severities.Each image was meticulously labeled, contributing a comprehen-sive dataset with an average of approximately 250 annotated CNOsper image and over 74,000 annotations in total. The dataset wasthen randomly split into three subsets for training and evaluatingthe object detectors: an 80% training set, a 10% validation set, and a10% test set. Additionally, we applied a range of data augmentationtechniques [67, 68] to expand the training set threefold, includ-ing adjustments to brightness (-25% to 25%), exposure (-15% to15%), blur (up to 1 pixel), noise (up to 2% of pixels), and Mosaicaugmentation [48].In this study, we focused on fine-tuning YOLOv10 and RT-DETRv2 [66] models for CNO detection using our corneocyte nan-otexture image dataset. Specifically, we compared the performanceof various scales within each model, namely YOLOv10-{N, S, M,B, L, X} and RT-DETRv2-{S, M, L, X}, to determine the optimal

Figure 2. Optimal BW selection for KDE using cross-validation. (A) Corneocyte
nanotexture image with detected CNOs marked as green spots. (B) Selected optimal
BW=38. (C) Example of undersmoothing (BW=10). (D) Example of oversmoothing
(BW=60).

configuration for CNO detection. All models were trained and eval-uated on an NVIDIA Tesla T4 GPU in Google Colab, following thesame train-from-scratch settings as in [58, 65], respectively. Dueto computational limitations, we adjusted the batch size as neces-sary. Detailed hyperparameter settings for each model are providedin Supplementary Table S1. and S2. for further reference.

Spatial Analysis using kernel density estimator

The calculation of CNO density can exhibit significant variabilitydue to the high sensitivity of nano-imaging techniques to environ-mental noise and structural occlusions on the corneocyte surface.Moreover, regions such as ridges or fringes on the corneocyte tendto have minimal CNO presence, which may compromise the ac-curacy of density calculations. This inherent variability in CNOdistribution poses challenges in obtaining consistent and reliabledensity estimates.
To address these issues, we implemented a kernel density esti-mator (KDE) [69, 70] to generate a continuous, probabilistic densitymap that captures the spatial distribution of CNOs across the cor-neocyte surface. KDE provides a flexible framework to estimatedensities from sparse and unevenly distributed data points, suchas CNO coordinates, by smoothing the distribution over the en-tire surface. A critical parameter in KDE is the kernel’s bandwidth(BW), which determines the smoothness of the density estimate.An overly small BW results in undersmoothing, amplifying mi-nor variations and noise in the data, whereas an excessively largeBW oversmooths the density map, potentially obscuring importantstructural details.
To optimize KDE performance, we empirically tuned the BWusing cross-validation to balance between undersmoothing andoversmoothing [71]. This approach ensures that the density mapaccurately reflects the spatial variation in CNO distribution, whileminimizing the influence of noise or occlusion artifacts. As shownin Figure 2, the selection of BW has a substantial impact on the KDEoutput, where smaller BW values emphasize localized variationswhile larger BW values result in a more homogenized density map.
Additionally, we divided the KDE density map into 25 discretelayers to enable a more detailed analysis of CNO distribution across
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Table 1. Performance comparison of YOLOv10 and RT-DETRv2 object detectors across various model scales. The table evaluates the models in termsof the number of parameters (M), FLOPS (G), AP50 (%), AP50-95 (%), and latency (ms).
Model #Parameter (M) FLOPS (G) AP50 (%) AP50-95 (%) Latency (ms)
YOLOv10-N 2.7 8.2 89.6 51.4 3.33YOLOv10-S 8.0 24.4 90.8 55.5 4.58YOLOv10-M 16.5 63.4 91.3 59.7 7.17YOLOv10-B 20.4 97.7 91.1 62.5 7.58YOLOv10-L 25.7 126.3 91.4 63.2 9.01YOLOv10-X 31.6 169.8 91.2 62.9 10.95RT-DETRv2-S 20.0 60.0 87.6 39.6 5.51RT-DETRv2-M 31.0 100.0 84.0 37.2 7.48RT-DETRv2-L 42.0 136.0 84.3 33.4 13.50RT-DETRv2-X 76.0 259.0 83.3 32.0 21.15

1 -{N, S, M, B, L, X} indicate nano, small, medium, balanced, large, and extra-large models.

Figure 3. CNO detection results using YOLOv10-L model with a confidence threshold of 0.141. (A) Mild AD sample (CNO count=180). (B)Moderate AD sample (CNO count=250).
(C) Severe AD sample (CNO count=483). (D) Healthy control (CNO count=22).

Figure 4. Spatial analysis of CNO distribution using KDE. (A) Corneocyte nanotexture image visualizing the presence of prominent ridges. (B) Corneocyte nanotexture image
visualizing an area affected by occlusion. The KDE maps illustrate varying CNO densities, with brighter regions indicating higher densities and darker regions representing
lower densities.
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various regions of the corneocyte. This stratified method allowedus to isolate and exclude regions affected by occlusion or artifacts,thereby improving the robustness of the analysis.
For subsequent analyses, we calculated the CNO density on thecorneocyte surface by averaging the density values from the central5 layers of the KDE density map, ensuring a more reliable represen-tation of CNO distribution. In this study, the CNO density calculatedusing KDE was termed the Effective Corneocyte Topographical In-dex (ECTI).

Analyses

Comparative analysis of deep learning object detectors

In this section, we compare the performance of YOLOv10 and RT-DETRv2 models for CNO detection based on model scale, computa-tional cost, detection accuracy, and inference speed. The standardaverage precision (AP) metrics [72, 73] were used to evaluate detec-tion accuracy. AP provides a unified score by integrating metricssuch as recall, precision, and intersection over union (IoU), ensur-ing an unbiased performance assessment. AP50 refers to the APcalculated at a fixed IoU threshold of 0.5, whereas AP50-95 repre-sents the mean AP across uniformly sampled IoU thresholds from0.50 to 0.95, with a step size of 0.05 [74]. The evaluation was con-ducted on a test set of 30 annotated corneocyte nanotexture images.In addition, latency was measured on an NVIDIA Tesla T4 GPU usingTensorRT FP16 [75], with all test images resized to 512x512 pixelsto align with the resolution of the corneocyte nanotexture images.
Table 1 presents the evaluation results of the YOLOv10 and RT-DETRv2 models, including the number of parameters, floating-point operations per second (FLOPs), AP at different IoU thresholds,and latency. Both object detectors achieve high AP50 scores above83%; however, RT-DETRv2 exhibits lower AP50-95 scores com-pared to YOLOv10. The results show that YOLOv10 consistentlyoutperforms RT-DETRv2 in detection accuracy across all modelscales. Notably, the YOLOv10-L model achieves the highest accu-racy, with an AP50 of 91.4% and an AP50-95 of 63.2%, exceedingthe best-performing RT-DETRv2 variant (RT-DETRv2-S) with anAP50 of 87.6% and an AP50-95 of 39.6%.
In terms of inference speed, both models are capable of real-time object detection. However, when comparing models of similarscales, such as YOLOv10-B with RT-DETRv2-S and YOLOv10-Xwith RT-DETRv2-M, RT-DETRv2 generally demonstrates lowercomputational costs (FLOPs) and reduced latency.

Qualitative results

Figure 3 presents the qualitative results of applying the fine-tunedYOLOv10-L model to detect CNOs on corneocyte nanotexture im-ages with different AD severity levels (G1, G2, G3, G4). The confi-dence threshold was set to 0.141, as this value achieved the high-est F1 score [76] of 0.85, providing an optimal balance betweenprecision and recall. The F1-confidence curve for the fine-tunedYOLOv10-L model is provided in Supplementary Fig. S2. The resultsdemonstrate the model’s capability to accurately quantify in quan-tifying CNOs, even in the presence of vibrational noise introducedduring topographic imaging.
Figure 4 presents the analysis results of CNO distribution usingKDE, in which the algorithm generates a density map representingthe spatial distribution of CNOs. This process effectively excludesregions with ridges or occlusions, thereby improving the accuracyof CNO density calculations.

Figure 5. Effect of KDE on the variability in CNO density calculations across AD
severity groups (G1, G2, G3, G4). The gray bars indicate CV values without KDE; the
black bars show CV values with KDE applied.

Ablation study on KDE

To evaluate the impact of KDE on the variability of CNO densitycalculations, we conducted an ablation study, comparing resultswith and without KDE across different AD severity groups. The co-efficient of variation (CV) [77] was used as a measure of variability,with lower CV values indicating more stable and consistent den-sity estimates. For each SC sample, the CV was calculated from 10density estimates derived from its corneocyte nanotexture images.The mean CV for each AD severity group was then determined byaveraging the CVs of all samples within the group.
As shown in Figure 5, the application of KDE led to a notablereduction in the CV across most AD groups (G1 to G3), while G4remained nearly unchanged. Without KDE, the CV values wereconsistently higher, indicating higher variability in the raw CNOdensity calculations. Specifically, applying KDE resulted in a reduc-tion of 7.95% in G1 (from 0.440 to 0.405), 18.5% in G2 (from 0.432to 0.352), 13.0% in G3 (from 0.399 to 0.347), and a slight increase of1.1% in G4 (from 0.375 to 0.379).
The ablation study demonstrates the effectiveness of KDE ingenerating more robust density estimates by reducing variability,particularly in AD groups (G1 to G3) with higher CNO presence.

Statistical analysis

The mean ECTI scores, derived from the KDE analyses of 10 cor-neocyte nanotexture images per SC tape, were used for statisticalanalyses. Each AD group (G1, G2, G3) contributed a total of 30 datapoints, comprising 15 from lesional and 15 from non-lesional SCsamples. In contrast, the healthy control group (G4) contributed 15data points exclusively from non-lesional SC samples. All imageswere preprocessed and CNOs were identified using the fine-tunedYOLOv10-L models.
Initially, samples from each AD severity group (G1, G2, G3, G4)underwent the Shapiro-Wilk normality test [78] to assess theirdata distribution. Given the non-normal distribution observed inmost data groups, the Wilcoxon signed-rank test [79] was adoptedto determine statistically significant differences between pairedsamples, focusing on the comparison of lesional and non-lesionalSC samples from the same AD patient. In addition, the Wilcoxonrank-sum test [80] was applied to identify significant differencesbetween independent sample groups, specifically among the AD
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Figure 6. Statistical results of ECTI scores in SC samples from AD patients (n = 15 for both lesional and non-lesional skin areas in each group) and healthy controls (n = 15).
(A) Comparison of ECTI scores between lesional and non-lesional SC samples across AD severity groups. (B) ECTI scores for non-lesional SC samples. (C) CNO density in
non-lesional SC samples calculated over the entire imaging area (20x20 µm2) without KDE. Box plot notations: ns → not significant, *p ≤ 0.05, **p ≤ 0.01; AD severity
groups according to EASI score: G1 → mild AD, G2 → moderate AD, G3 → severe AD, G4 → healthy controls.

severity groups G1, G2, G3, and G4. Samples with missing data orthose that could not be paired for comparison were excluded fromthe analysis.Figure 6(A) presents the statistical results using box plots, fur-ther subdividing each AD severity group into lesional and non-lesional sampled areas. Overall, the plot reveals a clear trend ofincreasing ECTI scores corresponding to the AD severity. Most ADseverity groups exhibit significant differences between lesionaland non-lesional SC samples, indicating a higher occurrence ofCNOs in the lesional skin areas. Additionally, the healthy controls(G4) consistently demonstrate the lowest ECTI scores comparedto other AD severity groups. Figure 6(B) presents the statisticalanalysis of non-lesional SC samples across AD severity groups (G1,G2, G3) compared to the healthy control group (G4), demonstrat-ing significant differences between the AD groups and the healthycontrols.Figure 6(C) provides a comparative analysis of CNO density innon-lesional SC samples calculated over the entire imaging area(20x20 µm2) without using KDE to exclude ineffective regions. Theresults demonstrate less significant differences between AD sever-ity groups and the healthy control group, particularly being unableto differentiate between mild AD (G1) and healthy controls.

Discussion

The findings of this study demonstrated the potential of corneo-cyte nanotexture as a reliable biomarker for assessing AD sever-ity, particularly through CNO density calculation. By integratingstate-of-the-art deep learning object detectors with spatial analy-sis algorithms, we proposed the ECTI, an accurate and quantifiablemeasure for evaluating skin barrier impairment [14]. The ECTIexhibited remarkable robustness in overcoming the inherent chal-lenges of nano-imaging, such as environmental noise and struc-tural occlusions on the corneocyte surface, further enhancing itsapplicability in clinical settings.Previous studies revealed significant differences in corneocytenanotexture between healthy and AD skin samples without spec-ifying the clinical scoring of AD severity, resulting in a lack of in-depth analysis for AD severity assessment [12]. In our study, weconducted statistical analyses of ECTI scores across different ADseverity groups (G1, G2, G3, G4), categorized by their EASI scores.The results revealed a clear trend of increasing ECTI scores withhigher AD severity and demonstrated significant differences be-tween AD skin samples of varying severity and healthy controls,in both lesional and non-lesional skin areas. This finding alignswith clinical observations of AD severity, offering clinicians a moreobjective tool for assessing the skin disease.

By leveraging deep learning object detectors, we addressed thelimitations of the existing DTI method, which is prone to inaccu-racies due to its dependence on fixed geometric criteria for CNOidentification. To determine the optimal model architecture for CNOdetection, we evaluated the performance of two state-of-the-artobject detectors with various scales: YOLOv10-{N, S, M, B, L, X} andRT-DETRv2-{S, M, L, X}. Both models demonstrated robust per-formance in CNO detection, with the YOLOv10-L model achievingthe highest overall accuracy (AP50) of 91.4%. Although RT-DETRv2exhibited enhanced computational efficiency at comparable modelcomplexities, the YOLOv10 models were more suitable for this studydue to their higher detection accuracy.
Furthermore, we applied KDE to perform spatial analysis of CNOdistribution. Unlike the DTI, which calculates CNO density acrossthe entire corneocyte nanotexture image (20x20 µm2) withoutexcluding ineffective regions such as ridges and occlusions, ourapproach selectively excluded these areas to minimize variance inCNO density calculations. This refinement provided a more preciserepresentation of CNO density, enabling us to effectively distinguishbetween mild AD (G1) and healthy controls (G4) in non-lesional SCsamples.
Future work could involve expanding the corneocyte nanotex-ture database to include a wider range of skin diseases and condi-tions, providing a more comprehensive and interpretable frame-work for evaluating skin health through corneocyte nanotextureanalysis. Additionally, integrating our findings into clinical practicecould substantially improve AD severity assessment by offering anobjective and quantifiable evaluation method. Clinicians could uti-lize corneocyte nanotexture analysis as an accessible and effectivetool to monitor disease progression, assess treatment efficacy, andpersonalize therapeutic interventions for routine clinical use.
This study also acknowledges certain limitations. First, whilethe sample size in this study is adequate for preliminary analysis, itmay not fully capture the variability within the broader population,particularly across diverse ethnic groups and age ranges. Second,the variability in sample collection could lead to inconsistencies.Although a standardized tape-stripping procedure was employed,variations in local eczema severity, exact sampling locations, andindividual skin conditions could contribute to discrepancies in thecollected SC samples. Moreover, the lack of data on factors such asemollient use, sun exposure, or bathing habits prior to samplingmay further affect the results. Finally, as this study focused on AD,the applicability of our approach to other dermatological conditionsremains to be validated, necessitating further research to generalizethese findings to a wider range of skin diseases.
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Conclusion

This study presents a novel methodology that integrates deep learn-ing object detection with spatial analysis to enable robust and accu-rate CNO density calculation within corneocyte surface topography.The ECTI was introduced as a quantifiable measure for assessingAD severity. Our results revealed significant differences in ECTIscores between SC samples of varying AD severity and healthy con-trols, in both lesional and non-lesional skin areas, demonstratingits potential as a reliable biomarker for AD assessment. Future workwill focus on expanding the corneocyte nanotexture database andexploring the potential of ECTI in broader dermatological applica-tions.

Additional Files

Supplementary Table T1. Hyperparameter settings of YOLOv10.
Supplementary Table T2. Hyperparameter settings of RT-DETRv2.
Supplementary Fig. S1. Training results of YOLOv10-L on the cor-neocyte nanotexture dataset. The box loss (box) measures the errorin predicted bounding box coordinates, the classification loss (cls)quantifies the error in class predictions, and distribution focal loss(dfl) adjusts the bounding box regression by focusing on more chal-lenging examples to improve precision. ’om’ denotes evaluation onthe training set, and ’oo’ indicates evaluation on the validation set.
Supplementary Fig. S2. F1-confidence curve of YOLOv10-L onthe corneocyte nanotexture test set. This curve illustrates the re-lationship between confidence threshold and the F1 score, withthe highest F1 score of 0.85 achieved at a confidence threshold of0.141. This point indicates the optimal balance between precisionand recall for the model.

Availability of Source Code and Requirements

• Project name: ECTI Atopic Dermatitis• Project home page: https://github.com/JenHungWang/ECTI_
Atopic_Dermatitis• Operating system(s): Platform independent• Programming language: Python 3.11.4• Other requirements: Python 3.10+, matplotlib 3.7.2, numpy1.25.1, opencv-python 4.8.0.74, scipy 1.11.1, scikit-image 0.21.0,scikit-learn 1.3.1, ultralytics 8.2.95, customtkinter 5.2.1• License: PSF, BSD, Apache, AGPL-3.0• Workflowhub: https://doi.org/10.48546/workflowhub.
workflow.1161.1• ECTI is registered as a software application on SciCrunch (RRID:SCR_025706) and biotools (biotools:ecti_atopic_dermatitis)

Data Availability

The corneocyte nanotexture dataset, along with the annotationsused to train YOLOv10 and RT-DETRv2 object detection models,is available in the GitHub repository [81]. Fine-tuned models andsource code can also be downloaded from the same repository. Allsupporting data and materials are accessible via the GigaSciencedatabase, GigaDB.
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